Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Authors

  • Hassan Fattahi Composite Research Center, Department of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran
  • Mahmood Nazarpoor Department of Medical Physics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surface was successfully modified with biocompatible poly (N-vinylpyrrolidone) (PVP). The effect of TR on the signal intensity (SI) of the PVP-grafted SPIONs was assessed in the spin-echo T1-weighted MRI images. Results: The results indicated the maximum SI at the concentration of 400 µmol Fe/l with the TR of 800-2,200 milliseconds. Moreover, the maximum SI was observed at the concentration of 75 µmol Fe/l, where TR was within the range of 2,900-6,400 milliseconds. Conclusion: According to the results, in addition to their capability as negative MRI contrast agents, PVP-grafted SPIONs could be preferred positive contrast agents with specific imaging parameters and have the potential application for early cancer diagnosis and perfusion measurements.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitat...

full text

Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent

The magnetite (Fe3O4) nanoparticles (MNPs) coated with poly(N-vinyl pyrrolidone) (PVP) via covalent bonds were prepared as T2 contrast agent for magnetic resonance imaging (MRI). The surface of MNPs was first coated with 3(trimethoxysilyl) propyl methacrylate (silan A) by a silanization reaction to introduce reactive vinyl groups onto the surface, then poly(N-vinyl pyrrolidone) was grafted onto...

full text

Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI cont...

full text

Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles.

The cerebral blood volume (CBV) is a crucial physiological indicator of tissue viability and vascular reactivity. Thus, noninvasive CBV mapping has been of great interest. For this, ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, including monocrystalline iron oxide nanoparticles, can be used as long-half-life, intravascular susceptibility agents of CBV MRI measurements. Moreover...

full text

In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles.

Positive-contrast techniques are being developed to increase the detection of magnetically labeled cells in tissues. We evaluated a post-processing positive-contrast technique, susceptibility-gradient mapping (SGM), and compared this approach with two pulse sequences, a gradient-compensation-based "White Marker" technique and an off-resonance-based approach, inversion recovery on-resonance wate...

full text

T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes

Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd co...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  214- 222

publication date 2019-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023